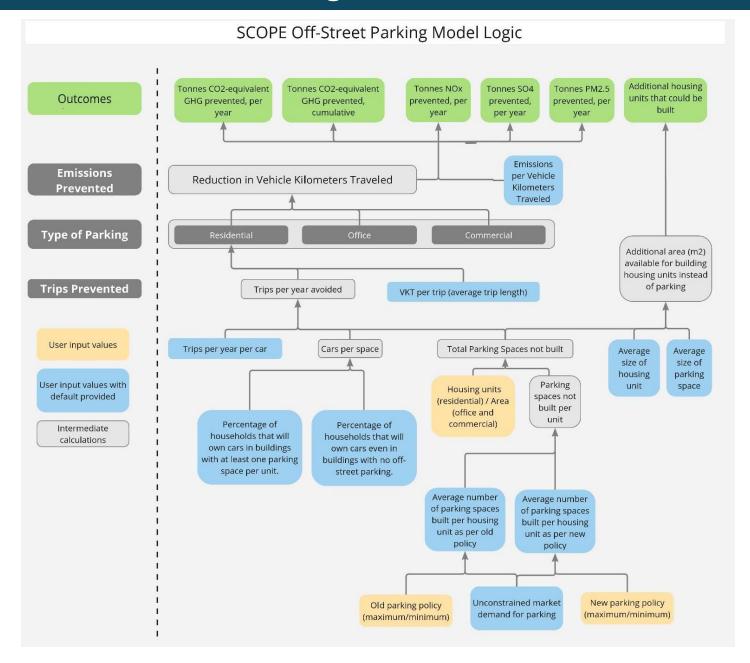
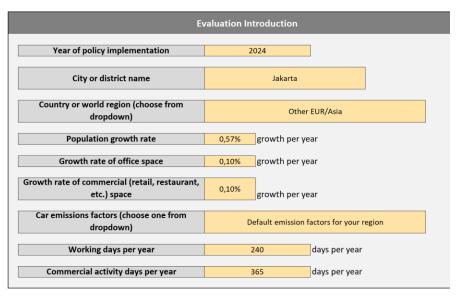


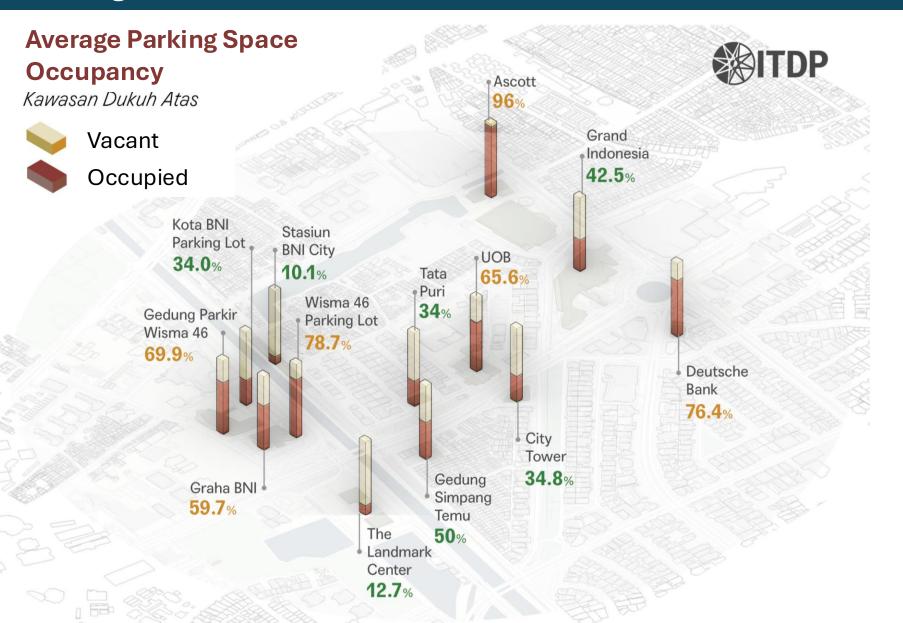
Background


Isu sektor transportasi di Jakarta


- Estimated losses due to congestion reached IDR 65 Trillion (JICA, 2020)
- Jakarta is the city with the highest pollution level in Indonesia, 3x the national standard. Estimated health loss reaches Rp 36.9 Trillion (Vital Strategies, 2020)
- Land transportation is responsible for 58.9% of PM 2.5 and 64.4% of NOx
 - The level of public transport use only reached 10% (2023), while in 2045 it is targeted at 55%.

Parking Management

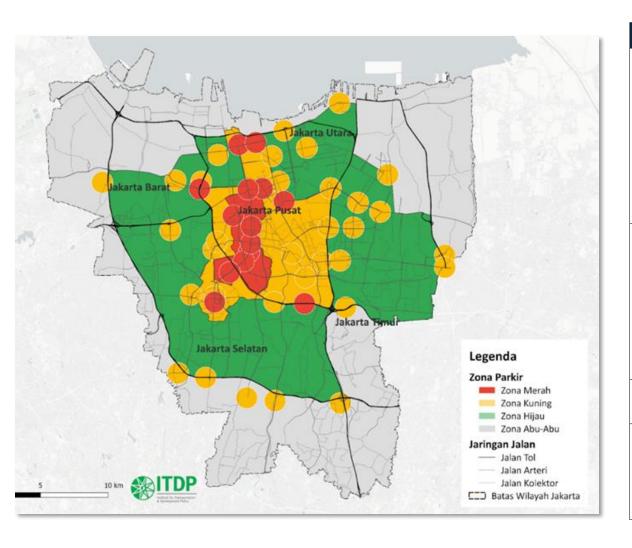
ITDP Off Street Parking SCOPE Tools


Mandatory user input

Estimate or assumption that may be replaced by user input

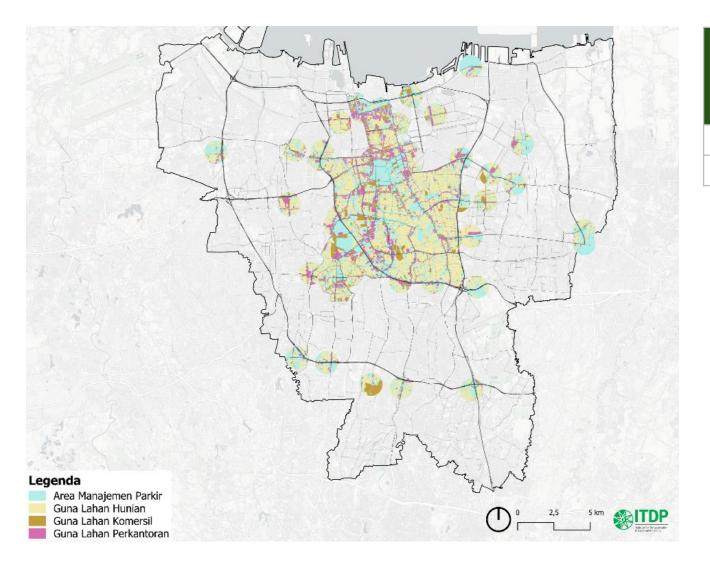
Data from a database

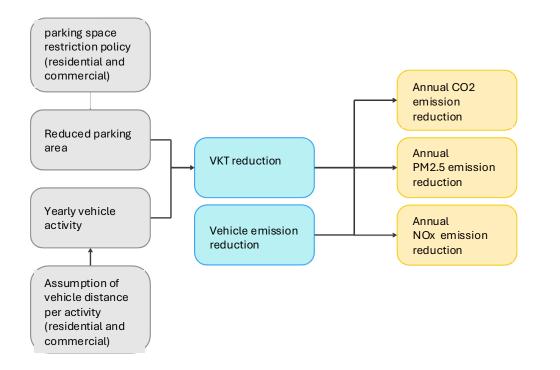
Output


Parking Issues

The ITDP Indonesia survey (2024) noted that the occupancy rate of parking spaces inside buildings only reached 80% on weekdays. In 2022, the figures were even lower: 41% for cars and 58% for motorcycles.

There are around 30,000 parking spaces inside office buildings and residential areas—equivalent to 37 times the size of a football field.


Recommendation Overview


Zone	Criteria	Policy
Red	 Alternative sustainable transportation modes and the most complete push policy intervention. TOD areas can be categorized into the red zone. 	 Red zones will apply the most restrictive policies Rates are 2.2 - 2.9x higher than the posted rate No on-street parking Maximum parking 30 minutes - 1 hour Maximum amount of off-street parking is the same or less
Yellow	 TOD areas can be categorized into the yellow zone. It is required to have 1 (one) public transportation service and is not included in the electronic fee road (JBE) implementation area. 	 Rates are 1.35-1.7x higher than prescribed rates Maximum parking duration 1-2 hours No on-street parking
Green	Served by at least 1 (one) feeder public transportation.	Reduction of minimum parking requirements.
Gray	Zones that are not served by public transportation, are not accessible by walking or cycling, and are located in the outer zones of the KRE.	N/A

Impact Assessment

Environmental

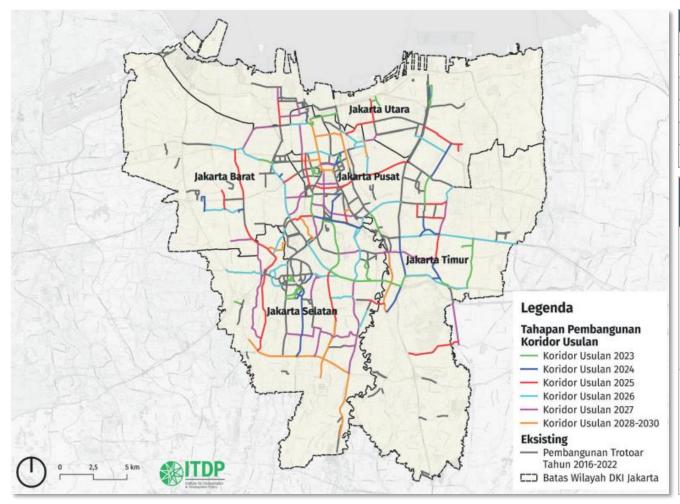


Year	Accumulative carbon	NOx	PM 2.5		
	emission reduction	accumuative	accumulative(ton)		
	(000 tons)	(ton)			
2024	N/A (first year of implementation)				
2030	490	150	18		

Impact Assessment

Housing Unit

Reduction of parking space in residential land use	2025	2026	2027	2028	2029	2030
Total unit	12,74	12,81	12,885	12,96	13,03	13,1

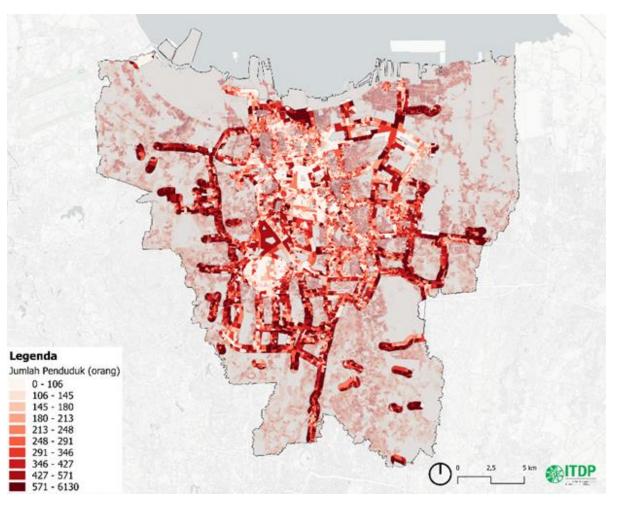

	Space eallocation in the zone	Parking Space Unit (PSU) ratio	Total of PSU in the zone	Total area for parking (2.5 x 5 m per PSU)	Unit area	Total unit from conversion of parking
		0,8 PSU				
2	25.356.394	per 100				
r	n2	meters	202.851	2.535.639	36 m2	56.347*

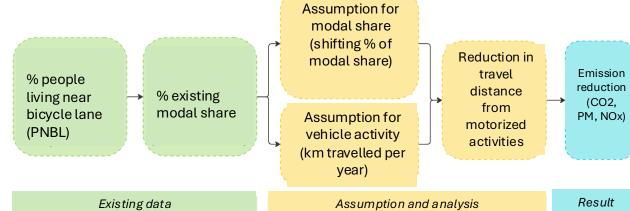
Cycling Infrastructure

ITDP Off Street Bicycle Lane SCOPE Tools

				,	
			Intermediate calculations	.	
	Sketch Model for Predicting Impacts of Pr	otected Bicycle Lane	People Near Bikeways (# of people)	2.454.583	
		otootoa Bioyolo Lalle	Predicted cycling activity (passenger-km traveled per year on		
	Networks		protected cycleways)	773.193.645	
	Developed by ITDP. May be copied and used noncommercially		Modal shift from car	4,8%	
	(Creative Commons BY-NC-ND 3.0), but derivatives may not		Modal shift from taxi/ridehailing	8,3%	
	•	AVAITED	Modal shift from motorcycle	65,5%	
	be distributed. For more information, see the accompanying		Total reduction in person-kilometers traveled (pkt) by car	37.308.135	
	report: Protected Bicycle Lanes Protect the Climate (ITDP, 2022)				
	,		Total reduction in pkt by taxi/ridehailing	64.449.514	
	To use this model, either download it as a .xlsx file and open it		Total reduction in pkt by motorcycle	506.658.969	
	in Microsoft Excel, or use Google Sheets to make a copy in				
	your own Drive so that you can edit it: (File -> Make a copy).		Predicted impacts		
			Uncertainty	20,0%	
	User Inputs		- Thornamy		
	City name	Jakarta	Reduction in GHG emissions (tonnes CO2-eq per year) (min)	29.000	
Basic information	World region (choose one from dropdown)	Other Europe/Asia	Reduction in GHG emissions (tonnes CO2-eq per year) (max)	44.000	
	City total population	10.672.100	Reduction in GHG emissions (tonnes CO2-eq per year)	29000,0 to 44000,0	
	People Near protected Bikeways (%) for proposed network				
	(percentage of population within 300m walking distance of a				
	protected bicycle lane)	23%			
Bicycle lane	OR				
network extent:	Length of protected bicycle lane network (km)				
Choose one	Length of protected bioyole lane hetwork (kill)				

Recommendation Overview




No	Year of construction	Length (m)
1	2023	25.150
2	2024	41.240
3	2025	52.210
4	2026	62.980
5	2027	63.740*
6	2028-2030	42.560**

Infrastruc	Prinsip Utama dan Elemen Desain					
ture						
Walking	 Integrated: connected to neighborhoods, and public transportation nodes in the area. Continuous: uninterrupted; crossing facilities available. Safe and Secure: minimum conflict with vehicles, ensuring a sense of security. Accessible: universal design for all age groups and abilities. Direct and Easy: shortest, most convenient and safe route to the destination. 					
Cycling	 Integrated: consistent, connected origin-destination lanes, with bicycle parking facilities. Direct: quick and close routes, including contra flow lanes and dedicated crossings. Safe and Secure: physical protection, high visibility and speed control. Comfortable: flat surfaces, durable materials and standardized dimensions. 					

Impact Assessment

Environment

Parameters	2025	2026	2027	2028	2029	2030
CO2 (000 ton)	44	45	44	46	41	35
NOx (ton)	309	307	290	300	263	209
PM2.5 (ton)	2,88	2,87	2,72	2,8	2,47	1,97